

U.S. Department of Transportation

Federal Highway Administration
Office of Operations
Research and Development

Characterizing the Impact of Production Adaptive Cruise Control on Traffic Flow: An Investigation

Rachel M. James – Pathways Student Intern, Ph.D. Student Christopher Melson – Research Civil Engineer Jia Hu, Ph.D. – National Academy of Sciences Research Fellow Joe Bared, Ph.D., P.E. – Team Leader, Concepts and Analysis

Turner-Fairbank Highway Research Center

Introduction

- ACC utilizes radar to maintain desired constant time gap
- ACC capability in vehicles is on the rise
 - 2.2% of new 2014 models¹
 - 7.2% of new 2020 models¹
- ACC is a convenience feature
- ACC throughput estimations in literature are highly variable

Contribution Statements

- This paper seeks to serve as a comprehensive assessment of the likely impact of ACC on traffic flow.
- Four ACC car-following models are simulated using VISSIM's External Driver Model functionality under consistent simulation conditions^{2,3,4,5}.
- Models are (re)calibrated using car-following data from two of the FHWA ACC-equipped 2013 Cadillacs SRXs⁶.
- Corridor throughput and traffic flow characteristics are explored in detail.

ACC Car-Following Models (CFMs)

- MIXIC^{2,7}
 - One of the original models for automated highway systems
 - Highly unstable lacks a collision warning system (CWS)
- Improved Intelligent Driver Model (IIDM)³
 - Originally developed for naturalistic driving
 - Additional heuristics added to IIDM for ACC
 - Collision free (without human takeover)

ACC Car-Following Models (CFMs)

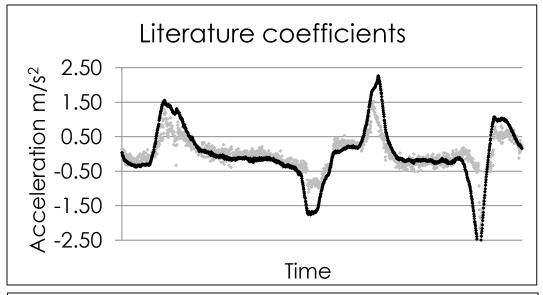
- California PATH Empirical Model⁴
 - Includes regression model for a CWS developed by CAMP
 - Calibrated using data collected from ACCenabled Infiniti M56s
- TU Delft Empirical Model⁵
 - Based on PATH algorithm
 - Includes approach mode and dynamic spacing margin
 - Includes logistic model for CWS developed by CAMP

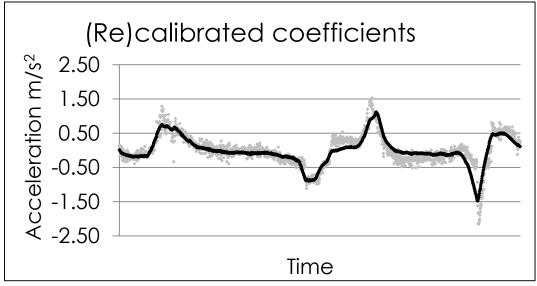
Introduction

(Re)calibration of ACC CFMs

- Data collected July 2015
- Dulles Access Road, Northern Virginia
- 2013 ACC-enabled Cadillac SRXs
- Acceleration/Deceleration scenarios between 25-75mph
- Calibration optimization problem:
 - Minimize RMSE between observed and predicted acceleration
 - Split into calibration and validation dataset

Calibration Coefficients


Model	Calibration coefficients	Purpose of coefficient	Original coefficients found in literature	(Re)calibrated coefficients using Cadillac SRX data
MIXIC	k_v	Sensitivity to difference in relative velocity	0.58	0.27
	k_d	Sensitivity to difference in physical gap and reference distance	0.10	0.06
IIDM	а	Represents maximum acceleration	1.96	1.00
	b	Represents maximum deceleration	2.94	2.55
PATH	k_1	Sensitivity to distance error	0.23	0.07
	k_2	Sensitivity to speed error	0.07	0.27
Delft	k_1	Sensitivity to distance error	0.23	0.02
	k_2	Sensitivity to speed error	0.07	0.33


Introduction

ACC Models

Methodology

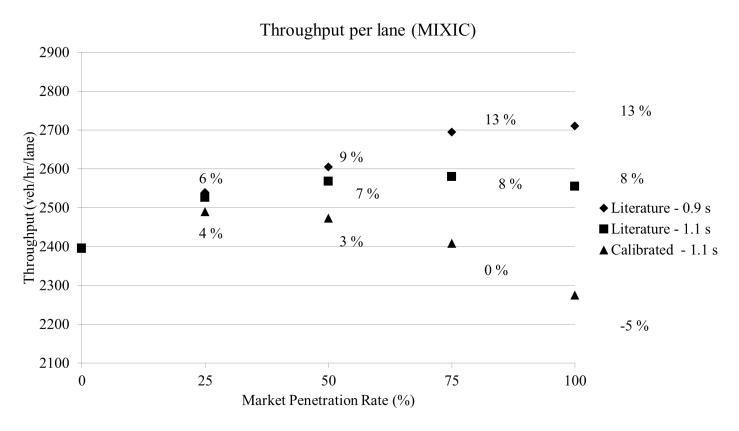
Results

Introduction

ACC Models

Methodology

Results

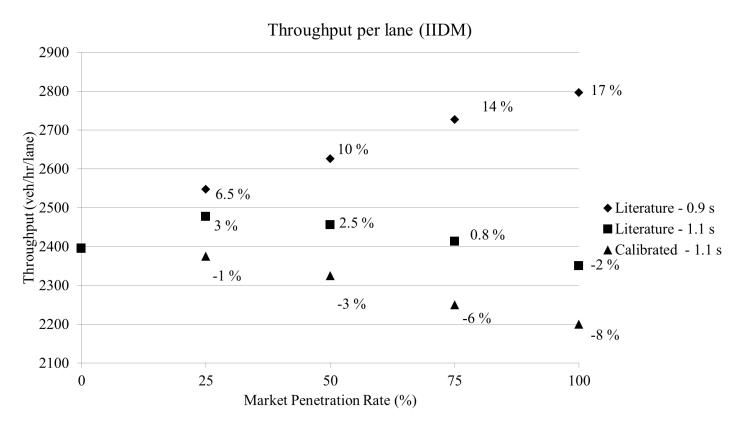

Microsimulation Case Studies

- Vehicle Control
 - ACC CFM longitudinal control
 - Software lane changing logic lateral control
 - Human takeover as prescribed by ACC CFM
- Assumptions:
 - MP rates | [0%-100%], 25%
 - Time gaps | [0.9s, 1.1s]
 - Desired speed distribution [55-65mph]
 - Ten random seeds⁹

Microsimulation Case Studies

- Throughput Analysis
 - Four lane basic segment
 - Demand | [1800-3000vphpl], 200vphpl
 - Over 4200 simulations
- Traffic Flow Characteristics Analysis
 - Three lane basic segment
 - Random reduced speed zones to induce bottlenecks⁸
 - Upstream of emulator congested regime
 - Downstream of emulator uncongested regime

Throughput Analysis - MIXIC

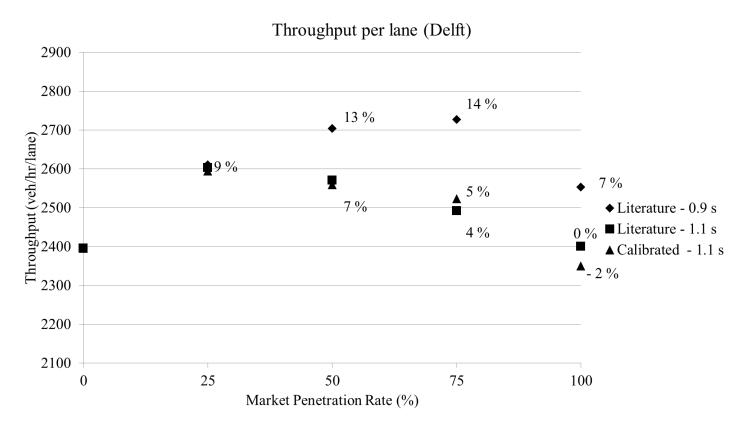

Introduction

ACC Models

Methodology

Results

Throughput Analysis - IIDM


Introduction

ACC Models

Methodology

Results

Throughput Analysis - Delft

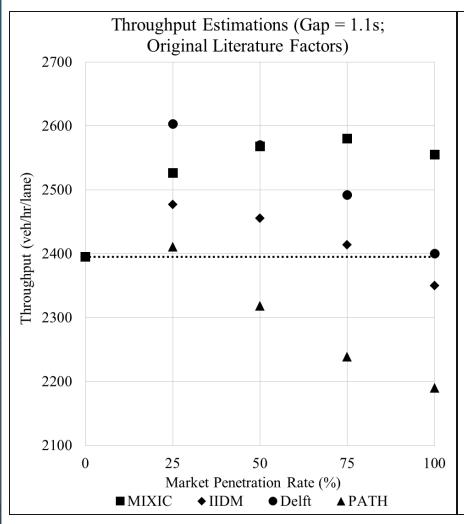
Introduction

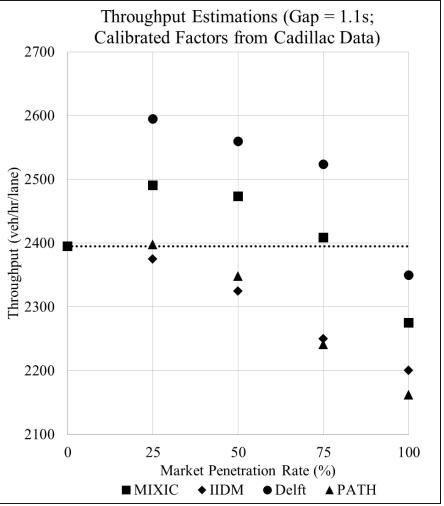
ACC Models

Methodology

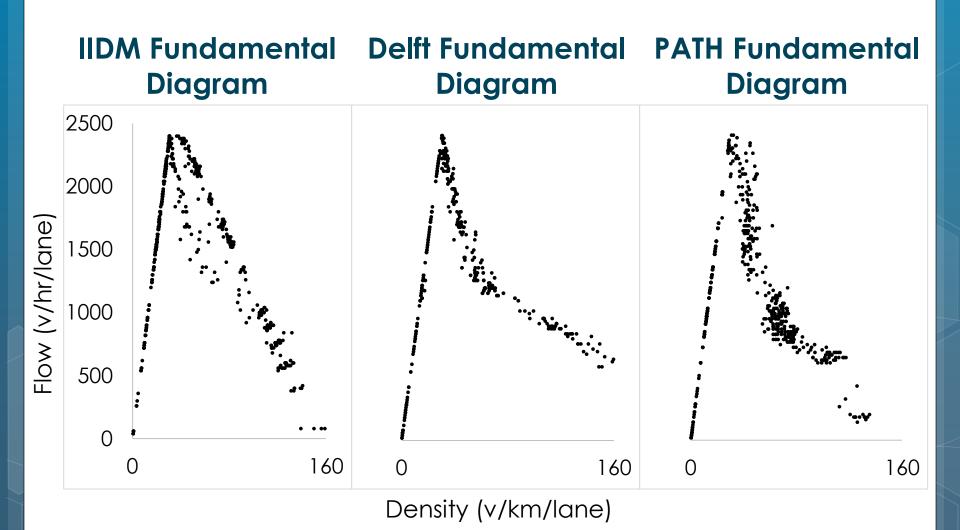
Results

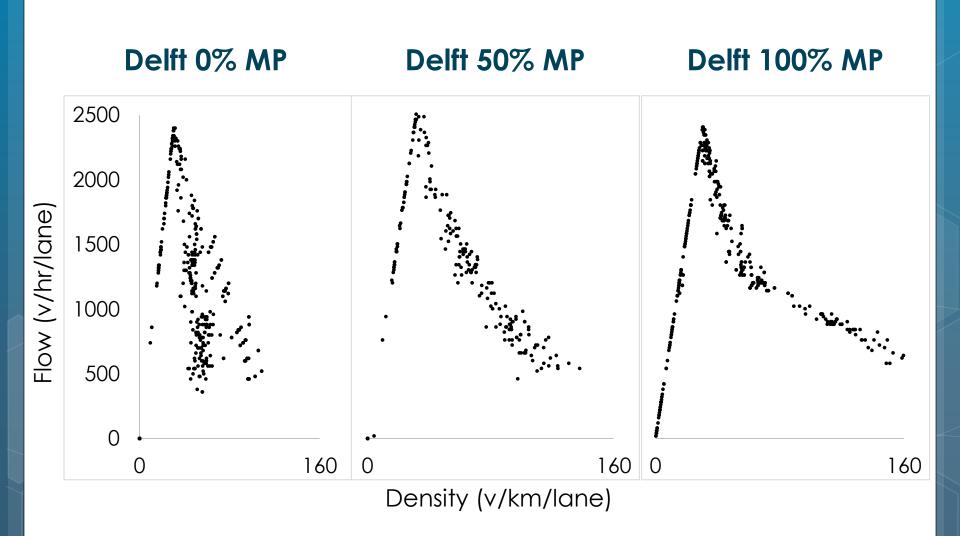
Throughput Analysis - PATH




Introduction

ACC Models


Methodology


Results

Assuming 100% MP

- The MIXIC ACC CFM is most sensitive to calibration coefficients
- The IIDM ACC CFM is most sensitive to the desired time gap
- The PATH & Delft empirical ACC CFM not sensitive to coefficients
- When ACC MP rates are low, throughput ↑
- Marginal impact on throughput when MP rate ≤ 50%
- When MP rates > 50%, average throughput ↓
- Scatter in the fundamental diagram ↓ as MP ↑
- Congested regime of FD is sensitive to the ACC CFM (human takeover alters shape)

Thank you for your attention. Any questions?

For additional information, please contact Dr. Joe Bared at Joe.Bared@dot.gov

Introduction

ACC Models

Methodology

Results

Bibliography

- 1. Wayland, M. 2015. Adaptive cruise control goes mainstream. March 3. http://www.usatoday.com/story/business/autos/2015/03/03/adaptive-cruise-control-growing/24352141/.
- 2. van Arem, B., A. P. De Vos, and M. J. Vanderschuren. The Microscopic Traffic Simulation Model MIXIC 1.3. 1997.
- 3. Treiber, M., and A. Kesting. Car-Following Models Based on Driving Strategies. In Traffic Flow Dynamics (S. B. Heidelberg, ed.), pp. 181–204.
- 4. Milanés, V., and S. E. Shladover. Modeling Cooperative and Autonomous Adaptive Cruise Control Dynamic Responses Using Experimental Data. Transportation Research Part C: Emerging Technologies, Vol. 48, 2014, pp. 285–300.
- 5. Xiao, L., M. Wang, and B. van Arem. Realistic Car-Following Models for Microscopic Simulation of Adaptive and Cooperative Adaptive Cruise Control Vehicles. Transportation Research Record: Journal of the Transportation Research Board, Vol. 2623, 2017. https://doi.org/DOI: 10.3141/2623-01.
- 6. Su, P, J Ma, T W P Lochrane, D J Dailey, and D Hale. 2016. "An adaptive cruise control car-following framework based on trajectory data." 95th Transportation Research Board Annual Meeting Compendium of Papers. Washington, D.C.
- 7. VanderWerf, J, S Shladover, N Kourjanskaia, M Miller, and H Krishnan. 2001. "Modeling effect of driver control assistance systems on traffic." *Transportation Research Record*, 1748 167-174.
- 8. Melson, C, M W Levin, B E Hammit, and S D Boyles. 2017. "Dynamic traffic assignment of cooperative adaptive cruise control." In review, *Transportation Research Part C*.
- 9. Dowling, R., Skabardonis, A., & Alexiadis, V. (2004). Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling Software. Publication No. FHWA-HRT-04-040 (Vol. III).

Introduction

ACC Models

Methodology

Results